





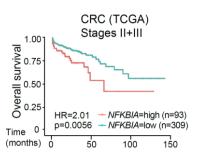
# NEW STRATEGY TO DISCRIMINATE PRO-TUMORIGENIC PATHWAYS

A research group from CIBER and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) has patented new ΙκΒα mutants capable to predict the specific pathway altered in ΙκΒα-deficient tumors.

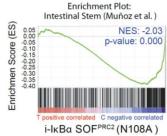
### The Need

IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor A) is a cellular protein which inhibits the NF-κB (nuclear factor-kappa B) transcription factor. Besides, it has been shown that IκBα can exert an alternatively function as a regulator of polycomb repression complex 2 (PRC2) activity. There is an unmet medical need of finding reliable strategies for assessing whether a cancer type characterized by the inactivation of IκBα protein, which is a marker of poor prognosis, has been

originated via activation of NF-κB or, alternatively, via


#### The Solution

We have generated new separation-of-function IkB $\alpha$  mutants, which represent an innovative and unique tool for assessing whether a cancer type characterized by the inactivation of IkB $\alpha$  protein is originated by and depends on aberrant NF-kB activation or PRC2 miss-regulation. Identification of the driving force in specific IkB $\alpha$ -deficient cancer subtypes or individuals will have a clear impact in patient treatment management and will allow the design of specific inhibitors directed towards NF-kB or PRC2 pathways. Moreover, these mutants will allow setting-up medium or high-throughput platforms for the screen of clinically approved anti-cancer drugs.


## **Innovative Aspects**

PRC2 dysregulation.

- Separation-of-function mutants has a clear impact in the treatment of patients carrying IκBα-deficient tumors (i.e., Hodgkin's lymphoma, squamous cell carcinoma, liver cancer or glioblastoma).
- They could also be used to better stratify patients either for diagnosis, therapy prescription and as inclusion criteria in clinical trials (A).
- The identification of the specific residues involved in the activation of the NF-κB pathway could be essential to develop specific inhibitors of NF-κB signaling in tumors, since all the existing compounds are very toxic in patients.



**A.** Representation of overall survival over time for CRC patients from the TCGA Portal, with high or low expression of *NFKBIA*.



**B.** GSEA of an intestinal stem cell (ISC) gene set associated to poor prognosis, from genes significantly repressed upon ectopic expression (16 hours) of i-lkB $\alpha$  SOF<sup>PRC2</sup> (unchanged when expressing i-lkB $\alpha$  SOF NF- $\kappa$ B).

#### **Intellectual Property:**

 Priority European patent application filed (March, 2<sup>nd</sup> 2022) suitable for international extension (PCT application)

## **Stage of Development:**

Validated in "in vitro" experiments on transformed cells derived from colorectal cancer patients and with ongoing experiments in adult and pediatric glioblastoma.

#### Aims

Looking for a partner interested in a license and/or a collaboration agreement to develop and exploit this asset.



#### **Contact details**

Centro de Investigación Biomédica en Red (CIBER)
otc@ciberisciii.es
https://www.ciberisciii.es/en